Linear algebra is a building block in scientific computation. Initially dominated by the numerical computation, it has been the scene of major breakthrough in exact computation during the last decade. These algorithmic progresses making the exact computation approach feasible, it became necessary to consider these algorithms from the viewpoint of practicability. We present the building of a set of basic exact linear algebra subroutines. Their efficiency over a finite field near the numerical BLAS. Beyond the applications in exact computation, we show that they offer analternative to the multiprecision numerical methods for the resolution of ill-conditioned problems.The computation of the characteristic polynomial is part of the classic prob...