The main topic of the thesis is the study of processes obtained from Brownian motion by different kinds of probability change (penalisations). In this way, we construct processes which arestrongly related to Brownian local times and self-intersection localtimes; in particular, we generalize Edwards' model, a polymer modelobtained from Brownian motion by penalising its self-intersections.Le sujet principal de la thèse est l'étude de processus obtenus àpartir du mouvement brownien par différents types de changements deprobabilité (pénalisations). De cette manière, nous construisons desprocessus qui sont fortement liés aux temps locaux browniens et auxtemps locaux d'intersection; en particulier, nous généralisons lemodèle d'Edwards, un modèle ...
Using the Itô-Wiener chaos expansion we prove that the normalized self-intersection local time of pl...
This monograph discusses the existence and regularity properties of local times associated to a cont...
On étudie les processus d'Ornstein-Uhlenbeck (OU) à valeurs complexes. En prenant le OU paramètre ég...
de Faria M, Drumond C, Streit L. The Square of Self-Intersection Local Time of Brownian Motion. In: ...
The Brownian motion with multi-dimensional time parameter introduced by Paul Lévy can be viewed as a...
Abstract. The main result is a counterpart of the theorem of Monroe [Ann. Probability 6 (1978) 42–56...
The subject of my thesis is the theory of penalisation originaly developed by B .Roynette, P. Valloi...
The subject of my thesis is the theory of penalisation originaly developed by B .Roynette, P. Valloi...
A few years ago, Aptekarev, Bleher and Kuijlaars have demonstrated, using an earlier result due to K...
In this thesis, we study the distributional properties of functionals of the Brownian motion. The th...
Bien que rares, les événements extrêmes peuvent jouer un rôle majeur dans un large éventail de situa...
Bornales J, Oliveira MJ, Streit L. Chaos Decomposition and Gap Renormalization of Brownian Self-Inte...
This habilitation thesis contains two parts. In the first one, we study a family of probability meas...
Branching Brownian motion (BBM) is a particle system, where particles move and reproduce randomly. F...
In this work we extend Varadhan’s construction of the Edwards polymer model to the case of fraction...
Using the Itô-Wiener chaos expansion we prove that the normalized self-intersection local time of pl...
This monograph discusses the existence and regularity properties of local times associated to a cont...
On étudie les processus d'Ornstein-Uhlenbeck (OU) à valeurs complexes. En prenant le OU paramètre ég...
de Faria M, Drumond C, Streit L. The Square of Self-Intersection Local Time of Brownian Motion. In: ...
The Brownian motion with multi-dimensional time parameter introduced by Paul Lévy can be viewed as a...
Abstract. The main result is a counterpart of the theorem of Monroe [Ann. Probability 6 (1978) 42–56...
The subject of my thesis is the theory of penalisation originaly developed by B .Roynette, P. Valloi...
The subject of my thesis is the theory of penalisation originaly developed by B .Roynette, P. Valloi...
A few years ago, Aptekarev, Bleher and Kuijlaars have demonstrated, using an earlier result due to K...
In this thesis, we study the distributional properties of functionals of the Brownian motion. The th...
Bien que rares, les événements extrêmes peuvent jouer un rôle majeur dans un large éventail de situa...
Bornales J, Oliveira MJ, Streit L. Chaos Decomposition and Gap Renormalization of Brownian Self-Inte...
This habilitation thesis contains two parts. In the first one, we study a family of probability meas...
Branching Brownian motion (BBM) is a particle system, where particles move and reproduce randomly. F...
In this work we extend Varadhan’s construction of the Edwards polymer model to the case of fraction...
Using the Itô-Wiener chaos expansion we prove that the normalized self-intersection local time of pl...
This monograph discusses the existence and regularity properties of local times associated to a cont...
On étudie les processus d'Ornstein-Uhlenbeck (OU) à valeurs complexes. En prenant le OU paramètre ég...