On étudie dans le corps des séries formelles de Puiseux, la résolution des équations algébriques de 2 et 3 variables. Le développement des solutions dépend de la nature du point au voisinage duquel on développe la fonction algébrique associée à cette équation algébrique. Pour les points réguliers on développe un algorithme basé sur la méthode itérative de Newton: xk+1=xk−f(xk)/f'(xk). Pour les points singuliers une méthode constructive appelée polygone de Newton permet de déterminer de proche en proche les approximants des solutions. On donne une application de la méthode du polygone de Newton à la détermination des polynômes facteurs déterminants d'un opérateur différentiel à singularité irrégulière à l'origin
Dans la première partie de ce travail, nous parlons de l'accéleration [i.e. accélération] de la conv...
Le travail présente dans cette thèse est un travail algorithmique portant sur deux sujets: solutions...
Le travail présente dans cette thèse est un travail algorithmique portant sur deux sujets: solutions...
On étudie dans le corps des séries formelles de Puiseux, la résolution des équations algébriques de ...
On étudie dans le corps des séries formelles de Puiseux, la résolution des équations algébriques de ...
Cette thèse traite de l'utilisation du polygone de Newton dans la résolution d'équations aussi bien ...
Un logiciel pour les solutions formelles d'équations différentielles linéaires d'ordre 2 au voisinag...
Un logiciel pour les solutions formelles d'équations différentielles linéaires d'ordre 2 au voisinag...
SIGLECNRS 17660 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc
RésuméLe problème inverse des valeurs propres est la recherche d'une matrice diagonale X, telle que ...
Dans ce travail, nous construisons des algorithmes de calcul de solutions formelles de systèmes d'éq...
Les quatres chapîtres de cette thèse aborde quatre thèmes de la théorie des itérations: 1) nous élab...
Les méthodes plus avancées d'optimisation avec ou sans contraintes nécessitent le calcul des dérivée...
Les quatres chapîtres de cette thèse aborde quatre thèmes de la théorie des itérations: 1) nous élab...
Les quatres chapîtres de cette thèse aborde quatre thèmes de la théorie des itérations: 1) nous élab...
Dans la première partie de ce travail, nous parlons de l'accéleration [i.e. accélération] de la conv...
Le travail présente dans cette thèse est un travail algorithmique portant sur deux sujets: solutions...
Le travail présente dans cette thèse est un travail algorithmique portant sur deux sujets: solutions...
On étudie dans le corps des séries formelles de Puiseux, la résolution des équations algébriques de ...
On étudie dans le corps des séries formelles de Puiseux, la résolution des équations algébriques de ...
Cette thèse traite de l'utilisation du polygone de Newton dans la résolution d'équations aussi bien ...
Un logiciel pour les solutions formelles d'équations différentielles linéaires d'ordre 2 au voisinag...
Un logiciel pour les solutions formelles d'équations différentielles linéaires d'ordre 2 au voisinag...
SIGLECNRS 17660 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc
RésuméLe problème inverse des valeurs propres est la recherche d'une matrice diagonale X, telle que ...
Dans ce travail, nous construisons des algorithmes de calcul de solutions formelles de systèmes d'éq...
Les quatres chapîtres de cette thèse aborde quatre thèmes de la théorie des itérations: 1) nous élab...
Les méthodes plus avancées d'optimisation avec ou sans contraintes nécessitent le calcul des dérivée...
Les quatres chapîtres de cette thèse aborde quatre thèmes de la théorie des itérations: 1) nous élab...
Les quatres chapîtres de cette thèse aborde quatre thèmes de la théorie des itérations: 1) nous élab...
Dans la première partie de ce travail, nous parlons de l'accéleration [i.e. accélération] de la conv...
Le travail présente dans cette thèse est un travail algorithmique portant sur deux sujets: solutions...
Le travail présente dans cette thèse est un travail algorithmique portant sur deux sujets: solutions...