The thesis focuses on three nonlinear modeling problems: classification (or pattern recognition), regression (or function approximation) and hybrid system identification. Amongst existing approaches, Support Vector Machines (SVMs) offer a general framework for both nonlinear classification and regression. These recent methods, based on statistical learning theory, rely on convex optimization to train black-box models with good generalization performances. The study first focuses on the evolution of these models towards grey-box models, which can benefit at the same time from the universal approximation capacity of black-box models and from prior knowledge. In particular, the thesis proposes a general framework for the incorporation of a wid...
Abstract—As an emerging non-parametric modeling technique, the methodology of support vector regress...
In this document we propose the use of a widely known learning-from-examples paradigm, namely the Su...
Support Vector Machine (SVM) is one of the most important class of machine learning models and algor...
Cette thèse porte sur l'application de la théorie statistique de l'apprentissage pour l'identificati...
In automatic control, obtaining a model is always the cornerstone of the synthesis procedures such a...
En automatique, l'obtention d'un modèle du système est la pierre angulaire des procédures comme la s...
In automatic control, obtaining a model is always the cornerstone of the synthesis procedures such a...
CDROM DOI: 10.1109/CDC.2010.5718011International audienceThis paper focuses on the identification of...
International audienceThe paper focuses on the identification of nonlinear hybrid dynamical systems,...
Les travaux de cette thèse portent sur l'identification des systèmes dynamiques hybrides. Nous nous ...
In this work we deal with the application of Support Vector Machines for Regression (SVRs) to the pr...
Les travaux de cette thèse portent sur l'identification des systèmes et l'extraction de motifs à par...
Mixture of experts (ME) models comprise a family of modular neural network architectures aiming at d...
Support Vector Machines are a modern method assigned to the field of artificial intelligence. This m...
In this thesis, we deal with the identification of systems and the extraction of patterns from data....
Abstract—As an emerging non-parametric modeling technique, the methodology of support vector regress...
In this document we propose the use of a widely known learning-from-examples paradigm, namely the Su...
Support Vector Machine (SVM) is one of the most important class of machine learning models and algor...
Cette thèse porte sur l'application de la théorie statistique de l'apprentissage pour l'identificati...
In automatic control, obtaining a model is always the cornerstone of the synthesis procedures such a...
En automatique, l'obtention d'un modèle du système est la pierre angulaire des procédures comme la s...
In automatic control, obtaining a model is always the cornerstone of the synthesis procedures such a...
CDROM DOI: 10.1109/CDC.2010.5718011International audienceThis paper focuses on the identification of...
International audienceThe paper focuses on the identification of nonlinear hybrid dynamical systems,...
Les travaux de cette thèse portent sur l'identification des systèmes dynamiques hybrides. Nous nous ...
In this work we deal with the application of Support Vector Machines for Regression (SVRs) to the pr...
Les travaux de cette thèse portent sur l'identification des systèmes et l'extraction de motifs à par...
Mixture of experts (ME) models comprise a family of modular neural network architectures aiming at d...
Support Vector Machines are a modern method assigned to the field of artificial intelligence. This m...
In this thesis, we deal with the identification of systems and the extraction of patterns from data....
Abstract—As an emerging non-parametric modeling technique, the methodology of support vector regress...
In this document we propose the use of a widely known learning-from-examples paradigm, namely the Su...
Support Vector Machine (SVM) is one of the most important class of machine learning models and algor...