The research of limit cycles for planar polynomial differential systems is historically motivated by Hilbert's 16th problem. This thesis work is devoted to the study of quadratic integrable perturbed systems for which we adapt Jean-Pierre Françoise theoretical algorithm. This algorithm enables to compute the successiv derivatives of the first return map. These derivatives are also called Melnikov functions. First, we investigate a Liénard system presenting a center at the origin. The computation of the first Melnikov function by two different methods ensures the existence of one limit cycle for the perturbed system. In some cases, we are able to compute higher order Melnikov functions and we give conditions for which the system still has a ...
We study quadratic perturbations of the integrable system (1 + x) dH, where H = (x(2) + y(2))/2. We ...
In this paper we outline some methods of finding limit cycles for planar autonomous systems with sma...
This paper studies the number of small limit cycles produced around an elementary center for Hamilto...
La recherche de cycles limites pour des sytèmes polynômiaux du plan est historiquement motivée par l...
AbstractWe study quadratic perturbations of the integrable system (1+x)dH, where H=(x2+y2)/2. We pro...
La thèse concerne l'étude des cycles limites d'une équation différentielle sur le plan (la deuxième ...
La thèse concerne l'étude des cycles limites d'une équation différentielle sur le plan (la deuxième ...
nd $, the inner and outer Abelian integrals are rational functions and we provide an upper bound for...
In this paper, we study limit cycle bifurcations for a kind of non-smooth polynomial differential sy...
AbstractWe compute the first three Melnikov functions of quadratic vector fields obtained as perturb...
In this paper we develop an arbitrary order Melnikov function to study limit cycles bifurcating from...
Agraïments: The third author is partially supported by FCT/Portugal through UID/MAT/04459/2013.We st...
In this paper we develop an arbitrary order Melnikov function to study limit cycles bifurcating from...
Neste trabalho, o objetivo principal é estudar o número máximo de ciclos limite, H(m, n), de um sist...
AbstractIn this paper, we first study the analytical property of the first Melnikov function for gen...
We study quadratic perturbations of the integrable system (1 + x) dH, where H = (x(2) + y(2))/2. We ...
In this paper we outline some methods of finding limit cycles for planar autonomous systems with sma...
This paper studies the number of small limit cycles produced around an elementary center for Hamilto...
La recherche de cycles limites pour des sytèmes polynômiaux du plan est historiquement motivée par l...
AbstractWe study quadratic perturbations of the integrable system (1+x)dH, where H=(x2+y2)/2. We pro...
La thèse concerne l'étude des cycles limites d'une équation différentielle sur le plan (la deuxième ...
La thèse concerne l'étude des cycles limites d'une équation différentielle sur le plan (la deuxième ...
nd $, the inner and outer Abelian integrals are rational functions and we provide an upper bound for...
In this paper, we study limit cycle bifurcations for a kind of non-smooth polynomial differential sy...
AbstractWe compute the first three Melnikov functions of quadratic vector fields obtained as perturb...
In this paper we develop an arbitrary order Melnikov function to study limit cycles bifurcating from...
Agraïments: The third author is partially supported by FCT/Portugal through UID/MAT/04459/2013.We st...
In this paper we develop an arbitrary order Melnikov function to study limit cycles bifurcating from...
Neste trabalho, o objetivo principal é estudar o número máximo de ciclos limite, H(m, n), de um sist...
AbstractIn this paper, we first study the analytical property of the first Melnikov function for gen...
We study quadratic perturbations of the integrable system (1 + x) dH, where H = (x(2) + y(2))/2. We ...
In this paper we outline some methods of finding limit cycles for planar autonomous systems with sma...
This paper studies the number of small limit cycles produced around an elementary center for Hamilto...