In this thesis, we obtain sufficient conditions for terminality of toric varieties of arbitrary dimension generalizing known results in dimension 3 and 4. We classify the Q-factorial, terminal, Gorenstein toric varieties of dimension 4 which admit G-desingularization. An algebraic variety X obtained by the weighted blowing-up of a regular invariant point of a toric Fano variety of dimension n and Picard's number equal to 1 is described by two vectors in Z^n . In terms of these vectors we describe the nef cone and classify the elementary contractions of X in the Mori's sense. In the case where the Fano variety is a projective space, we present some families of examples where X is terminal.Dans cette thèse on obtient des conditions suffisante...