This thesis addresses two important classes of optimization : multiobjective optimization and bilevel optimization. The investigation concerns their solution methods, applications, and possible links between them. First of all, we develop a procedure for solving Multiple Objective Linear Programming Problems (MOLPP). The method is based on a new characterization of efficient faces. It exploits the connectedness property of the set of ideal tableaux associated to degenerated points in the case of degeneracy. We also develop an approach for solving Bilevel Linear Programming Problems (BLPP). It is based on the result that an optimal solution of the BLPP is reachable at an extreme point of the underlying region. Consequently, we develop a pivo...