This thesis deals with the development of estimation algorithms with embedded feature selection the context of high dimensional data, in the supervised and unsupervised frameworks. The contributions of this work are materialized by two algorithms, GLOSS for the supervised domain and Mix-GLOSS for unsupervised counterpart. Both algorithms are based on the resolution of optimal scoring regression regularized with a quadratic formulation of the group-Lasso penalty which encourages the removal of uninformative features. The theoretical foundations that prove that a group-Lasso penalized optimal scoring regression can be used to solve a linear discriminant analysis bave been firstly developed in this work. The theory that adapts this technique t...
This dissertation essentially covers the work done by the author as a `Maître de Conférences'' at th...
This thesis presents a detailed study of multinomial regression, with a special focus on its applica...
Il existe des situations de modélisation statistique pour lesquelles le problème classique de classi...
This thesis deals with the problem of modeling and estimation of high-dimensional MoE models, toward...
This thesis deals with the problem of modeling and estimation of high-dimensional MoE models, toward...
This thesis deals with the problem of modeling and estimation of high-dimensional MoE models, toward...
This thesis deals with the problem of modeling and estimation of high-dimensional MoE models, toward...
This thesis deals with the problem of modeling and estimation of high-dimensional MoE models, toward...
This thesis deals with the problem of modeling and estimation of high-dimensional MoE models, toward...
This thesis deals with the problem of modeling and estimation of high-dimensional MoE models, toward...
In this thesis, we consider the linear regression model in the high dimensional setup. In particular...
Le contexte de cette thèse est la sélection de variables en grande dimension à l'aide de procédures ...
Diplôme : Dr. d'UniversitéThis thesis takes place within the framework of statistical learning. We s...
Cette thèse traite de la modélisation et de l’estimation de modèles de mélanges d’experts de grande ...
Cette thèse traite de la modélisation et de l’estimation de modèles de mélanges d’experts de grande ...
This dissertation essentially covers the work done by the author as a `Maître de Conférences'' at th...
This thesis presents a detailed study of multinomial regression, with a special focus on its applica...
Il existe des situations de modélisation statistique pour lesquelles le problème classique de classi...
This thesis deals with the problem of modeling and estimation of high-dimensional MoE models, toward...
This thesis deals with the problem of modeling and estimation of high-dimensional MoE models, toward...
This thesis deals with the problem of modeling and estimation of high-dimensional MoE models, toward...
This thesis deals with the problem of modeling and estimation of high-dimensional MoE models, toward...
This thesis deals with the problem of modeling and estimation of high-dimensional MoE models, toward...
This thesis deals with the problem of modeling and estimation of high-dimensional MoE models, toward...
This thesis deals with the problem of modeling and estimation of high-dimensional MoE models, toward...
In this thesis, we consider the linear regression model in the high dimensional setup. In particular...
Le contexte de cette thèse est la sélection de variables en grande dimension à l'aide de procédures ...
Diplôme : Dr. d'UniversitéThis thesis takes place within the framework of statistical learning. We s...
Cette thèse traite de la modélisation et de l’estimation de modèles de mélanges d’experts de grande ...
Cette thèse traite de la modélisation et de l’estimation de modèles de mélanges d’experts de grande ...
This dissertation essentially covers the work done by the author as a `Maître de Conférences'' at th...
This thesis presents a detailed study of multinomial regression, with a special focus on its applica...
Il existe des situations de modélisation statistique pour lesquelles le problème classique de classi...