We give in this thesis some moderately exponential algorithms for the MAX SAT problem. We discuss a very general method to conceive efficient exponential algorithms that give approximation scheme. In the end, we present some parameterized results for CUT problem with constrained cardinality.Nous détaillons dans cette thèse des algorithmes modérément exponentiels pour l'approximation du problème MAX SAT. Nous discutons d'une méthode générique pour la conception d'algorithmes exponentiels réalisant des schémas d'approximation dans un cadre plus général. Enfin, nous présentons des résultats paramétrés pour des problèmes de coupe à cardinalité contrainte
We study the approximability of the version of MAXSAT where exponentially large instances are succin...
To tackle NP-hard problems, several paradigms have been developed in the last decades: the polynomia...
Using ideas and results from polynomial time approximation and exact computation we design approxima...
Nous détaillons dans cette thèse des algorithmes modérément exponentiels pour l'approximation du pro...
Nous détaillons dans cette thèse des algorithmes modérément exponentiels pour l'approximation du pro...
International audienceWe study approximation of the max sat problem by moderately exponential algori...
International audienceWe study approximation of the max sat problem by moderately exponential algori...
Cette thèse se situe à l'interface entre deux branches de la théorie de la complexité, la résolution...
Cette thèse se situe à l'interface entre deux branches de la théorie de la complexité, la résolution...
This paper proposes a way to bring together two seemingly “foreign” domains that are the polynomial ...
We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2-satisfiab...
La version Working Paper attachée s'intitule "Efficient approximation by "low-complexity" exponentia...
We present a trade-off between polynomial approximation and exact computation. We show how using i...
This paper proposes a way to bring together two seemingly “foreign” domains that are the polynomial ...
We study the approximation of min set cover combining ideas and results from polynomial approximatio...
We study the approximability of the version of MAXSAT where exponentially large instances are succin...
To tackle NP-hard problems, several paradigms have been developed in the last decades: the polynomia...
Using ideas and results from polynomial time approximation and exact computation we design approxima...
Nous détaillons dans cette thèse des algorithmes modérément exponentiels pour l'approximation du pro...
Nous détaillons dans cette thèse des algorithmes modérément exponentiels pour l'approximation du pro...
International audienceWe study approximation of the max sat problem by moderately exponential algori...
International audienceWe study approximation of the max sat problem by moderately exponential algori...
Cette thèse se situe à l'interface entre deux branches de la théorie de la complexité, la résolution...
Cette thèse se situe à l'interface entre deux branches de la théorie de la complexité, la résolution...
This paper proposes a way to bring together two seemingly “foreign” domains that are the polynomial ...
We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2-satisfiab...
La version Working Paper attachée s'intitule "Efficient approximation by "low-complexity" exponentia...
We present a trade-off between polynomial approximation and exact computation. We show how using i...
This paper proposes a way to bring together two seemingly “foreign” domains that are the polynomial ...
We study the approximation of min set cover combining ideas and results from polynomial approximatio...
We study the approximability of the version of MAXSAT where exponentially large instances are succin...
To tackle NP-hard problems, several paradigms have been developed in the last decades: the polynomia...
Using ideas and results from polynomial time approximation and exact computation we design approxima...