Monte Carlo (MC) methods are numerical methods using random numbers to solve on computers problems from applied sciences and techniques. One estimates a quantity by repeated evaluations using N values ; the error of the method is approximated through the variance of the estimator. In the present work, we analyze variance reduction methods and we test their efficiency for numerical integration and for solving differential or integral equations. First, we present stratified MC methods and Latin Hypercube Sampling (LHS) technique. Among stratification strategies, we focus on the simple approach (MCS) : the unit hypercube Is := [0; 1)s is divided into N subcubes having the same measure, and one random point is chosen in each subcube. We analyze...
his paper will trace the history and development of a useful stochastic method for approximating cer...
The standard Kernel Quadrature method for numerical integration with random point sets (also called...
International audienceThis paper investigates the use of stratified sampling as a variance reduction...
Monte Carlo (MC) methods are numerical methods using random numbers to solve on computers problems f...
Les méthodes de Monte Carlo (MC) sont des méthodes numériques qui utilisent des nombres aléatoires p...
Les méthodes de Monte Carlo sont des méthodes probabilistes qui utilisent des ordinateurs pour résou...
In this thesis we have worked on two different subjects. First we have developed a theoretical analy...
La méthode Quasi-Monte Carlo Randomisé (RQMC) est souvent utilisée pour estimer une intégrale sur le...
International audienceWe analyze an extended form of Latin hypercube sampling technique that can be ...
International audienceWe analyze a stratified strategy for numerical integration and for simulation ...
A new variance reduction technique for the Monte Carlo solution of integral equations is introduced...
La simulation est devenue dans la dernière décennie un outil essentiel du traitement statistique de ...
Lorsqu’une grandeur d’intérêt ne peut être directement mesurée, il est fréquent de procéder à l’obse...
The standard Kernel Quadrature method for numerical integration with random point sets (also called ...
his paper will trace the history and development of a useful stochastic method for approximating cer...
The standard Kernel Quadrature method for numerical integration with random point sets (also called...
International audienceThis paper investigates the use of stratified sampling as a variance reduction...
Monte Carlo (MC) methods are numerical methods using random numbers to solve on computers problems f...
Les méthodes de Monte Carlo (MC) sont des méthodes numériques qui utilisent des nombres aléatoires p...
Les méthodes de Monte Carlo sont des méthodes probabilistes qui utilisent des ordinateurs pour résou...
In this thesis we have worked on two different subjects. First we have developed a theoretical analy...
La méthode Quasi-Monte Carlo Randomisé (RQMC) est souvent utilisée pour estimer une intégrale sur le...
International audienceWe analyze an extended form of Latin hypercube sampling technique that can be ...
International audienceWe analyze a stratified strategy for numerical integration and for simulation ...
A new variance reduction technique for the Monte Carlo solution of integral equations is introduced...
La simulation est devenue dans la dernière décennie un outil essentiel du traitement statistique de ...
Lorsqu’une grandeur d’intérêt ne peut être directement mesurée, il est fréquent de procéder à l’obse...
The standard Kernel Quadrature method for numerical integration with random point sets (also called ...
his paper will trace the history and development of a useful stochastic method for approximating cer...
The standard Kernel Quadrature method for numerical integration with random point sets (also called...
International audienceThis paper investigates the use of stratified sampling as a variance reduction...