This thesis aims at a systematic introduction to a weak dependence condition, provided by Doukhan and Louhichi (1999), which is more general than the clas- sical frameworks of mixing or associated sequences. The notion is broad enough to include some standard models such as stable Markov models, bilinear models, and more generally, Bernoulli shifts. In some cases no mixing properties can be expected without additional regularity assumption on the distribution of the innovations distribution for which a weak dependence condition can be easily de- rived. We investigate the relationship between weak dependence and mixing for discrete valued processes. We show that weak dependence implies mixing con- ditions under natural assumptions. The resul...