Monotonic optimization consists of minimizing or maximizing a monotonic objective function over a set of constraints defined by monotonic functions. Many optimization problems in economics and engineering often have monotonicity while lacking other useful properties, such as convexity. This thesis is concerned with the development and application of global optimization algorithms for monotonic optimization problems. First, we propose enhancements to an existing outer-approximation algorithm | called the Polyblock Algorithm | for monotonic optimization problems. The enhancements are shown to significantly improve the computational performance of the algorithm while retaining the convergence properties. Next, we develop a generic...