One approach to the automatic classification of program behaviors is to view these behaviors as the collection of all the program's executions. Many features of these executions, such as branch profiles, can be measured, and if these features accurately predict behavior, we can build automatic behavior classifiers from them using statistical machine-learning techniques. Two key problems in the development of useful classifiers are (1) the costs of collecting and modeling data and (2) the adaptation of classifiers to new or unknown behaviors. We address the first problem by concentrating on the properties and costs of individual features and the second problem by using the active-learning paradigm. In this paper, we present our technique for...