Reverse execution can be defined as a method which recovers the states that a program attains during its execution. Therefore, reverse execution eliminates the need for repetitive program restarts every time a bug location is missed. This potentially shortens debug time considerably. This thesis presents a new approach which, for the first time ever (to the best of the author's knowledge), achieves reverse execution at the assembly instruction level on general purpose processors via execution of a reverse program. A reverse program almost always regenerates destroyed states rather than restoring them from a record. Furthermore, a reverse program provides assembly instruction by assembly instruction execution in the backward directi...