This dissertation studies hybrid heuristic models in the context of classification rule discovery. Nature inspired search algorithms such as Genetic Algorithms, Ant Colonies and Particle Swarm Optimization have been previously studied on data mining tasks, in particular, classification rule discovery. We extended this work by applying a hybrid model which combines GA, PSO and hill climbers, in same type of classification tasks. Such models have been tested and proved to be performing better than individual search algorithms, in various combinatorial optimization problems. Our research focused on studying the same kind of performance enhancements in classification rule discovery tasks. As a part of this dissertation, we developed a model for...