We introduce a method for predicting midsagittal contours of orofacial articulators from real-time MRI data. A corpus of about 26 minutes of speech has been recorded of a French speaker at a rate of 55 images / s using highly undersampled radial gradient-echo MRI with image reconstruction by nonlinear inversion. The contours of each articulator have been manually traced for a set of about 60 images selected – by hierarchical clustering – to optimally represent the diversity of the speaker articulations. The data serve to build articulator-specific Principal Component Analysis (PCA) models of contours and associated image intensities, as well as multilinear regression (MLR) models that predict contour parameters from image parameters. The co...