The focus of this thesis are the equilibrium problem under derivative market imbalance, the sequential analysis problems for some time-inhomogeneous diffusions and multidimensional Wiener processes, and the first passage times of certain non-affine jump-diffusions. First, we investigate the impact of imbalanced derivative markets - markets in which not all agents hedge - on the underlying stock market. The availability of a closed-form representation for the equilibrium stock price in the context of a complete (imbalanced) market with terminal consumption allows us to study how this equilibrium outcome is affected by the risk aversion of agents and the degree of imbalance. In particular, it is shown that the derivative imbalance leads to s...
This thesis deals with the asymptotic behaviour of stochastic difference and functional differential...
This thesis treats a range of stochastic methods with various applications, most notably in finance....
Continuous stochastic control theory has found many applications in optimal investment. However, it ...
We study the sequential hypothesis testing and quickest change-point (disorder) detec- tion problems...
We compute some functionals related to the generalized joint Laplace transforms of the first times a...
In this Ph.D. dissertation we deal with the issue of the regularity and the estimation of probabili...
We study nonadditive Bayesian problems of detecting a change in drift of an observed diffusion proc...
In this thesis we focus on the development of a new class of stochastic models for asset price proce...
We compute some functionals related to the joint generalised Laplace transforms of the first times a...
We study the Bayesian problem of sequential testing of two simple hypotheses about the local drift o...
Many risk-neutral pricing problems proposed in the finance literature require to be dealt with by so...
My PhD thesis concentrates on the field of stochastic analysis, with focus on stochastic optimizatio...
We present solutions to some discounted optimal stopping problems for the maximum process in a model...
Abstract: A discrete time model of financial markets is considered. It is assumed that the relative...
This thesis deals with the asymptotic behaviour of stochastic difference and functional differential...
This thesis treats a range of stochastic methods with various applications, most notably in finance....
Continuous stochastic control theory has found many applications in optimal investment. However, it ...
We study the sequential hypothesis testing and quickest change-point (disorder) detec- tion problems...
We compute some functionals related to the generalized joint Laplace transforms of the first times a...
In this Ph.D. dissertation we deal with the issue of the regularity and the estimation of probabili...
We study nonadditive Bayesian problems of detecting a change in drift of an observed diffusion proc...
In this thesis we focus on the development of a new class of stochastic models for asset price proce...
We compute some functionals related to the joint generalised Laplace transforms of the first times a...
We study the Bayesian problem of sequential testing of two simple hypotheses about the local drift o...
Many risk-neutral pricing problems proposed in the finance literature require to be dealt with by so...
My PhD thesis concentrates on the field of stochastic analysis, with focus on stochastic optimizatio...
We present solutions to some discounted optimal stopping problems for the maximum process in a model...
Abstract: A discrete time model of financial markets is considered. It is assumed that the relative...
This thesis deals with the asymptotic behaviour of stochastic difference and functional differential...
This thesis treats a range of stochastic methods with various applications, most notably in finance....
Continuous stochastic control theory has found many applications in optimal investment. However, it ...