The symplectic Stiefel manifold, denoted by $\mathrm{Sp}(2p,2n)$, is the set of linear symplectic maps between the standard symplectic spaces $\mathbb{R}^{2p}$ and $\mathbb{R}^{2n}$. When $p=n$, it reduces to the well-known set of $2n\times 2n$ symplectic matrices. Optimization problems on $\mathrm{Sp}(2p,2n)$ find applications in various areas, such as optics, quantum physics, numerical linear algebra and model order reduction of dynamical systems. The purpose of this paper is to propose and analyze gradient-descent methods on $\mathrm{Sp}(2p,2n)$, where the notion of gradient stems from a Riemannian metric. We consider a novel Riemannian metric on $\mathrm{Sp}(2p,2n)$ akin to the canonical metric of the (standard) Stiefel manifold. In ord...