Atomicity and isolation of transactions are key requirements of advanced applications in federated systems consisting of distributed and heterogeneous components. While all existing federated systems support atomicity using the two-phase commit protocol, they lack support for federated concurrency control. Many possible solutions have been proposed in the literature, but they failed to make impact on real systems because they completely ignored the widely used concept of isolation levels, which offer optimization options to applications at the cost of less rigorous control over data consistency. This thesis compares existing definitions for isolation levels and develops a new characterization for Snaphot Isolation, an isolation level provid...