Nonequilibrium dynamics of biomembranes with active multiple-state inclusions is considered. The inclusions represent protein molecules which perform cyclic internal conformational motions driven by the energy brought with adenosine triphosphate (ATP) ligands. As protein conformations cyclically change, this induces hydrodynamical flows and also directly affects the local curvature of a membrane. On the other hand, variations in the local curvature of the membrane modify the transition rates between conformational states in a protein, leading to a feedback in the considered system. Moreover, active inclusions can move diffusively through the membrane so that their surface concentration varies. The kinetic description of this system is const...