Adaptive techniques make practical many quantum measurements that would otherwise be beyond current laboratory capabilities. For example, they allow discrimination of nonorthogonal states with a probability of error equal to the Helstrom bound, measurement of the phase of a quantum oscillator with accuracy approaching (or in some cases attaining) the Heisenberg limit (HL), and estimation of phase in interferometry with a variance scaling at the HL, using only single qubit measurement and control. Each of these examples has close links with quantum information, in particular, experimental optical quantum information: the first is a basic quantum communication protocol; the second has potential application in linear optical quantum computing;...