The classical Eckmann–Hilton argument shows that two monoid structures on a set, such that one is a homomorphism for the other, coincide and, moreover, the resulting monoid is commutative. This argument immediately gives a proof of the commutativity of the higher homotopy groups. A reformulation of this argument in the language of higher categories is: suppose we have a one object, one arrow 2-category, then its Hom-set is a commutative monoid. A similar argument due to A. Joyal and R. Street shows that a one object, one arrow tricategory is ‘the same’ as a braided monoidal category. In this paper we begin to investigate how one can extend this argument to arbitrary dimension. We provide a simple categorical scheme which allows us to formal...