Nesta tese estudamos as superfícies mínimas imersas em variedades Lorentzianas. Desenvolvemos uma versão geral da fórmula da representação de Weierstrass para superfícies mínimas do tipo tempo e tipo espaço imersas em uma variedade Lorentziana n-dimensional. Um tratamento especial é apresentado para o caso em que a variedade é um grupo de Lie munido de uma métrica Lorentziana invariante à esquerda. Mais especificamente, tratamos o caso do espaço de Damek-Ricci 4-dimensional, Riemanniano e Lorentziano. Usando a fórmula da representação de Weierstrass mostramos que existe uma única solução do problema de Björling para superfícies imersas em grupo de Lie Lorenzianos. Por fim, apresentamos alguns exemplos de superfícies mínimas construídas atra...