O propósito desta tese é estudar, sob o ponto de vista algébrico, o papel desempenhado pelos operadores diferenciais nos formalismos variacionais Lagrangeano e Hamiltoneano. Apresentamos uma aplicação simples das idéias e resultados básicos da teoria dos operadores diferenciais às álgebras de Clifford, obtendo uma relação entre os operadores diferenciais e o operador de Dirac. Introduzimos um formalismo Hamiltoneano, com base nos módulos de símbolos dos operadores diferenciais, generalizando os resultados para anéis comutativos. Nesse formalismo, encontramos importantes propriedades algébricas para a Hamiltoneana, e destacamos o colchete de Poisson como uma estrutura mais básica que a forma simplética canônica. Introduzimos o conceito de ad...