Neste trabalho é desenvolvido o estudo de fluxos inteiros em grafos, especificamente as Conjeturas de Tutte sobre a existência de k-fluxos (k = 3,4,5) que generalizam teoremas sobre coloração de grafos planares. A dissertação consiste de cinco capítulos. O capítulo 1 apresenta as Conjeturas de Tutte, além de um breve histórico sobre coloração de grafos. O capítulo 2 apresenta relações entre colorações de grafos planares, fluxos inteiros e fluxos modulares. O capítulo 3 apresenta configurações redutíveis, ou seja, subgrafos que não ocorrem em contra-exemplos mínimos para as Conjeturas de Tutte. O capítulo 4 apresenta os seguintes resultados conhecidos sobre a Conjetura dos 5-' fluxos: teorema dos 8-fluxos (Jaeger), teorema dos 6-fluxos (Seym...