Neste trabalho, estudamos a geometria das estruturas-f invariantes e curvas fholomorfas em variedades bandeira, a construção de toros equiharmônicos em variedades bandeira complexas não-degeneradas que não são f-holomorfos para qualquer estrutura-f invariante. Calculamos a segunda variação da energia para superfícies harmônicas riemannianas fechadas em variedades bandeira munidas com métricas do tipo Borel daídiscutimos a estabilidade para o referencial de Frenet de aplicações holomorfas com respeito a uma grande classe de métricas invariantes em F(N) obtidas via perturbação de métricas Kãhler. Além disso relacionamos a teoria de torneios com as estruturas quase complexas de uma variedade bandeira. Finalmente mostramos que a métrica Killing...