Medidas de dependência entre séries temporais são estudadas com a perspectiva de evidenciar como diferentes regiões do cérebro interagem, por meio da aplicação a sinais eletrofisiológicos. Baseado na representação auto-regressiva e espectral de séries temporais, diferentes medidas são comparadas entre si, incluindo coerência espectral e a coerência parcial direcionada, e introduz-se uma nova medida, denominada transferência parcial direcionada. As medidas são analisadas pelas propriedades de parcialização, relações diretas ou indiretas e direcionalidade temporal, e são mostradas suas relações com a correlação quadrática. Conclui-se que, entre as medidas analisadas, a coerência parcial direcionada e a transferência parcial direcionada possue...
Detecting and characterizing causal interdependencies and couplings between different activated brai...
A method to estimate from multivariate measurements the dependences within a network of coupled dyna...
The detection of causal effects among simultaneous observations provides knowledge about the underly...
Medidas de dependência entre séries temporais são estudadas com a perspectiva de evidenciar como dif...
This article proposes a systematic methodological review and an objective criticism of existing meth...
During the last years methods from nonlinear time series analysis have been successfully applied in ...
A method to estimate from multivariate measurements the dependences within a network of coupled dyna...
Conference PaperWe develop two new multivariate statistical dependence measures. The first, based on...
One major challenge in neuroscience is the identification of interrelations between signals reflecti...
Essa dissertação apresenta o desenvolvimento métodos para caracterização da conectividade entre séri...
We study two methods of data analysis which are common tools for the analysis of neuronal data. In p...
This tutorial paper introduces a common framework for the evaluation of widely used frequency-domain...
Diferente das medidas de associação global (coeficiente de correlação linear de Pearson, de Spearman...
In the past years, several frequency-domain causality measures based on vector autoregressive time s...
Many articles on perception, performance, psychophysiology, and neuroscience seek to relate pairs of...
Detecting and characterizing causal interdependencies and couplings between different activated brai...
A method to estimate from multivariate measurements the dependences within a network of coupled dyna...
The detection of causal effects among simultaneous observations provides knowledge about the underly...
Medidas de dependência entre séries temporais são estudadas com a perspectiva de evidenciar como dif...
This article proposes a systematic methodological review and an objective criticism of existing meth...
During the last years methods from nonlinear time series analysis have been successfully applied in ...
A method to estimate from multivariate measurements the dependences within a network of coupled dyna...
Conference PaperWe develop two new multivariate statistical dependence measures. The first, based on...
One major challenge in neuroscience is the identification of interrelations between signals reflecti...
Essa dissertação apresenta o desenvolvimento métodos para caracterização da conectividade entre séri...
We study two methods of data analysis which are common tools for the analysis of neuronal data. In p...
This tutorial paper introduces a common framework for the evaluation of widely used frequency-domain...
Diferente das medidas de associação global (coeficiente de correlação linear de Pearson, de Spearman...
In the past years, several frequency-domain causality measures based on vector autoregressive time s...
Many articles on perception, performance, psychophysiology, and neuroscience seek to relate pairs of...
Detecting and characterizing causal interdependencies and couplings between different activated brai...
A method to estimate from multivariate measurements the dependences within a network of coupled dyna...
The detection of causal effects among simultaneous observations provides knowledge about the underly...