We show that a holomorphic map germ f : (C(n), 0) -> (C(2n-1), 0) is finitely determined if and only if the double point scheme D(f) is a reduced curve. If n >= 3, we have that mu(D(2)(f)) = 2 mu(D(2)(f)/S(2))+C(f)-1, where D(2)(f) is the lifting of the double point curve in (C(n) x C(n), 0), mu(X) denotes the Milnor number of X and C(f) is the number of cross-caps that appear in a stable deformation of f. Moreover, we consider an unfolding F(t, x) = (t, f(t)(x)) of f and show that if F is mu-constant, then it is excellent in the sense of Gaffney. Finally, we find a minimal set of invariants whose constancy in the family f(t) is equivalent to the Whitney equisingularity of F. We also give an example of an unfolding which is topologically tr...
Não disponívelWe study φ-equivalence, and the corresponding concepts of finite determinacy and t...
In the study of equisingularity of families of mappings Gaffney introduced the crucial notion of exc...
Let f, g: ( R n, 0) 5 ( R p, 0) be two C ̀ -map-germs. We say that f and g are C 0- equi y al...
We show that a holomorphic map germ f : (C(n), 0) -> (C(2n-1), 0) is finitely determined if and only...
We characterize finite determinacy of map germs f : (C-2, 0) -> (C-3, 0) in terms of the Milnor n...
We characterize finite determinacy of map germs f : (C-2, 0) -> (C-3, 0) in terms of the Milnor n...
We characterize finite determinacy of map germs f : (C-2, 0) -> (C-3, 0) in terms of the Milnor n...
AbstractWe characterize finite determinacy of map germs f:(C2,0)→(C3,0) in terms of the Milnor numbe...
In this work, we consider a finitely determined map germ $f$ from $(\mathbb{C}^2,0)$ to $(\mathbb{C}...
Não disponívelThis work is concerned with the analysis of the conditions for a map-germ to be finite...
O primeiro objetivo deste trabalho é um estudo dos invariantes necessários para determinar condições...
O primeiro objetivo deste trabalho é um estudo dos invariantes necessários para determinar condições...
We say that two germs of analytic sets $(M,0)$ and $(N,0)$ in $(\mathbb{C}^n,0)$ have the same embed...
In this article, we investigate the geometry of quasi homogeneous corank one finitely determined map...
Não disponívelWe study φ-equivalence, and the corresponding concepts of finite determinacy and t...
Não disponívelWe study φ-equivalence, and the corresponding concepts of finite determinacy and t...
In the study of equisingularity of families of mappings Gaffney introduced the crucial notion of exc...
Let f, g: ( R n, 0) 5 ( R p, 0) be two C ̀ -map-germs. We say that f and g are C 0- equi y al...
We show that a holomorphic map germ f : (C(n), 0) -> (C(2n-1), 0) is finitely determined if and only...
We characterize finite determinacy of map germs f : (C-2, 0) -> (C-3, 0) in terms of the Milnor n...
We characterize finite determinacy of map germs f : (C-2, 0) -> (C-3, 0) in terms of the Milnor n...
We characterize finite determinacy of map germs f : (C-2, 0) -> (C-3, 0) in terms of the Milnor n...
AbstractWe characterize finite determinacy of map germs f:(C2,0)→(C3,0) in terms of the Milnor numbe...
In this work, we consider a finitely determined map germ $f$ from $(\mathbb{C}^2,0)$ to $(\mathbb{C}...
Não disponívelThis work is concerned with the analysis of the conditions for a map-germ to be finite...
O primeiro objetivo deste trabalho é um estudo dos invariantes necessários para determinar condições...
O primeiro objetivo deste trabalho é um estudo dos invariantes necessários para determinar condições...
We say that two germs of analytic sets $(M,0)$ and $(N,0)$ in $(\mathbb{C}^n,0)$ have the same embed...
In this article, we investigate the geometry of quasi homogeneous corank one finitely determined map...
Não disponívelWe study φ-equivalence, and the corresponding concepts of finite determinacy and t...
Não disponívelWe study φ-equivalence, and the corresponding concepts of finite determinacy and t...
In the study of equisingularity of families of mappings Gaffney introduced the crucial notion of exc...
Let f, g: ( R n, 0) 5 ( R p, 0) be two C ̀ -map-germs. We say that f and g are C 0- equi y al...