Consideramos um problema de otimização cuja função objetivo consiste na soma de funções convexas, não necessariamente diferenciáveis. Estudamos um método subgradiente que executa a iteração de forma incremental, selecionando cada função componente de maneira sequencial e processando a iteração subgradiente individualmente. Analisamos diferentes alternativas para a escolha do comprimento de passo, destacando as propriedades de convergência para cada caso. Abordamos também o modelo incremental em outros métodos, considerando iteração proximal e combinações de iterações subgradiente e proximal. Esta abordagem incremental tem sido muito bem sucedida quando o número de funções componentes é grande.We consider an optimization problem for which th...
A method, called an augmented subgradient method, is developed to solve unconstrained nonsmooth diff...
We propose in this paper an algorithm for solving linearly constrained nondierentiable convex progra...
International audienceIn this paper we present a subgradient method with non-monotone line search fo...
The goal of this work is describe the State of the Art about Subgradients Methods for optimization ...
We survey incremental methods for minimizing a sum ∑m i=1 fi(x) consisting of a large number of conv...
In this doctoral thesis, we propose new iterative methods for solving a class of convex optimization...
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do...
Laboratory for Information and Decision Systems Report LIDS-P-2847We consider the minimization of a ...
We generalize the subgradient optimization method for nondifferentiable convex programming to utiliz...
We study subgradient methods for convex optimization that use projections onto successive approximat...
Nesta dissertação consideramos um problema de otimização convexo e estudamos variações do método sub...
We study the subgradient projection method for convex optimization with Brannlund 's level cont...
In den letzten Jahrzehnten hat die konvexe Optimierung enorme Aufmerksamkeit erhalten und sich aufgr...
xvi, 152 p. : ill. ; 30 cm.PolyU Library Call No.: [THS] LG51 .H577P AMA 2013 HuThe purpose of this ...
© 2019, Springer Science+Business Media, LLC, part of Springer Nature. We suggest a conjugate subgra...
A method, called an augmented subgradient method, is developed to solve unconstrained nonsmooth diff...
We propose in this paper an algorithm for solving linearly constrained nondierentiable convex progra...
International audienceIn this paper we present a subgradient method with non-monotone line search fo...
The goal of this work is describe the State of the Art about Subgradients Methods for optimization ...
We survey incremental methods for minimizing a sum ∑m i=1 fi(x) consisting of a large number of conv...
In this doctoral thesis, we propose new iterative methods for solving a class of convex optimization...
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do...
Laboratory for Information and Decision Systems Report LIDS-P-2847We consider the minimization of a ...
We generalize the subgradient optimization method for nondifferentiable convex programming to utiliz...
We study subgradient methods for convex optimization that use projections onto successive approximat...
Nesta dissertação consideramos um problema de otimização convexo e estudamos variações do método sub...
We study the subgradient projection method for convex optimization with Brannlund 's level cont...
In den letzten Jahrzehnten hat die konvexe Optimierung enorme Aufmerksamkeit erhalten und sich aufgr...
xvi, 152 p. : ill. ; 30 cm.PolyU Library Call No.: [THS] LG51 .H577P AMA 2013 HuThe purpose of this ...
© 2019, Springer Science+Business Media, LLC, part of Springer Nature. We suggest a conjugate subgra...
A method, called an augmented subgradient method, is developed to solve unconstrained nonsmooth diff...
We propose in this paper an algorithm for solving linearly constrained nondierentiable convex progra...
International audienceIn this paper we present a subgradient method with non-monotone line search fo...