The first part of this monograph is an elementary introduction to the theory of Fréchet algebras. Important examples of Fréchet algebras, which are among those considered, are the algebra of all holomorphic functions on a (hemicompact) reduced complex space, and the algebra of all continuous functions on a suitable topological space.The problem of finding analytic structure in the spectrum of a Fréchet algebra is the subject of the second part of the book. In particular, the author pays attention to function algebraic characterizations of certain Stein algebras (= algebras of holomorphic functions on Stein spaces) within the class of Fréchet algebras
Let E be a Frechet (resp. Frechet-Hilbert) space. It is shown that E ∈ (Ω) (resp. E ∈ (DN)) if and o...
Let C (X) denote the lattice-ordered algebra of all real-valued continuous functions on a topologica...
A survey of general results about spectra of uniform algebras of symmetricholomorphic functions and ...
A class of Fréchet algebras of real analytic functions is constructed, with a weaker condition than ...
AbstractIf Ω is a weakly pseudoconvex domain in a Stein manifold, then the spectrum of the Frechet A...
AbstractUnder what conditions does the spectrum of a topological C-algebra exhibit C-analytic struct...
We give a characterization of Stein manifolds M for which the space of analytic functions,O(M), is i...
In this thesis we investigate the properties of various Banach function algebras and uniform algebra...
It is shown that if E is a Frechet space with the strong dual E∗ then Hb(E ∗), the space of holomorp...
AbstractWe show that several spaces of holomorphic functions on a Riemann domain over a Banach space...
Discovering various analytic structures in algebra spectra is one of the central themes in uniform a...
UNIFORM algebras have been extensively investigated because of their importance in the theory of uni...
UNIFORM algebras have been extensively investigated because of their importance in the theory of uni...
Any Banach space can be realized as a direct summand of a uniform algebra, and one does not expect a...
This book studies translation-invariant function spaces and algebras on homogeneous manifolds. The c...
Let E be a Frechet (resp. Frechet-Hilbert) space. It is shown that E ∈ (Ω) (resp. E ∈ (DN)) if and o...
Let C (X) denote the lattice-ordered algebra of all real-valued continuous functions on a topologica...
A survey of general results about spectra of uniform algebras of symmetricholomorphic functions and ...
A class of Fréchet algebras of real analytic functions is constructed, with a weaker condition than ...
AbstractIf Ω is a weakly pseudoconvex domain in a Stein manifold, then the spectrum of the Frechet A...
AbstractUnder what conditions does the spectrum of a topological C-algebra exhibit C-analytic struct...
We give a characterization of Stein manifolds M for which the space of analytic functions,O(M), is i...
In this thesis we investigate the properties of various Banach function algebras and uniform algebra...
It is shown that if E is a Frechet space with the strong dual E∗ then Hb(E ∗), the space of holomorp...
AbstractWe show that several spaces of holomorphic functions on a Riemann domain over a Banach space...
Discovering various analytic structures in algebra spectra is one of the central themes in uniform a...
UNIFORM algebras have been extensively investigated because of their importance in the theory of uni...
UNIFORM algebras have been extensively investigated because of their importance in the theory of uni...
Any Banach space can be realized as a direct summand of a uniform algebra, and one does not expect a...
This book studies translation-invariant function spaces and algebras on homogeneous manifolds. The c...
Let E be a Frechet (resp. Frechet-Hilbert) space. It is shown that E ∈ (Ω) (resp. E ∈ (DN)) if and o...
Let C (X) denote the lattice-ordered algebra of all real-valued continuous functions on a topologica...
A survey of general results about spectra of uniform algebras of symmetricholomorphic functions and ...