This volume presents a multi-dimensional collection of articles highlighting recent developments in commutative algebra. It also includes an extensive bibliography and lists a substantial number of open problems that point to future directions of research in the represented subfields. The contributions cover areas in commutative algebra that have flourished in the last few decades and are not yet well represented in book form. Highlighted topics and research methods include Noetherian and non- Noetherian ring theory as well as integer-valued polynomials and functions. Specific topics include: · Homological dimensions of Prüfer-like rings · Quasi complete rings · Total graphs of rings · Properties of prime ideals over various rin...
The theory of algebras, rings, and modules is one of the fundamental domains of modern mathematics. ...
The theory of algebras, rings, and modules is one of the fundamental domains of modern mathematics. ...
AbstractThe classical ring of integer-valued polynomials Int(Z) consists of the polynomials in Q[X] ...
This book consists of both expository and research articles solicited from speakers at the conferenc...
Occasioned by the international conference "Rings and Factorizations" held in February 2018 at Unive...
This is the first of two volumes of a state-of-the-art survey article collection which originates fr...
This is the first of two volumes of a state-of-the-art survey article collection which originates fr...
This is the second of two volumes of a state-of-the-art survey article collection which originates f...
This is the second of two volumes of a state-of-the-art survey article collection which originates f...
This is the second of two volumes of a state-of-the-art survey article collection which originates f...
This volume collects contributions by leading experts in the area of commutative algebra related to ...
Some remarkable connections between commutative algebra and combinatorics have been discovered in re...
Lecture notes from the 1st year of Master in Mathematics at the University of Luxembourg. Rings of i...
Offers an introduction to combinatorial commutative algebra, focusing on combinatorial techniques fo...
This book provides an introduction to the basics and recent developments of commutative algebra. A g...
The theory of algebras, rings, and modules is one of the fundamental domains of modern mathematics. ...
The theory of algebras, rings, and modules is one of the fundamental domains of modern mathematics. ...
AbstractThe classical ring of integer-valued polynomials Int(Z) consists of the polynomials in Q[X] ...
This book consists of both expository and research articles solicited from speakers at the conferenc...
Occasioned by the international conference "Rings and Factorizations" held in February 2018 at Unive...
This is the first of two volumes of a state-of-the-art survey article collection which originates fr...
This is the first of two volumes of a state-of-the-art survey article collection which originates fr...
This is the second of two volumes of a state-of-the-art survey article collection which originates f...
This is the second of two volumes of a state-of-the-art survey article collection which originates f...
This is the second of two volumes of a state-of-the-art survey article collection which originates f...
This volume collects contributions by leading experts in the area of commutative algebra related to ...
Some remarkable connections between commutative algebra and combinatorics have been discovered in re...
Lecture notes from the 1st year of Master in Mathematics at the University of Luxembourg. Rings of i...
Offers an introduction to combinatorial commutative algebra, focusing on combinatorial techniques fo...
This book provides an introduction to the basics and recent developments of commutative algebra. A g...
The theory of algebras, rings, and modules is one of the fundamental domains of modern mathematics. ...
The theory of algebras, rings, and modules is one of the fundamental domains of modern mathematics. ...
AbstractThe classical ring of integer-valued polynomials Int(Z) consists of the polynomials in Q[X] ...