We experimentally and theoretically studied the self-assembly kinetics of linear virus-like particles (VLPs) consisting of double-stranded DNA and virus-like coat proteins. The polynucleotide acts as a self-assembly template for our proteins with engineered attractive protein-DNA and protein-protein interactions that imitate the physicochemical functionality of virus coat proteins. Inspired by our experimental observations, where we found that VLPs grow from one point onward, our model presumes a nucleation step before subsequent sequential cooperative binding from one of the ends of the polynucleotide. By numerically solving the pertinent reaction rate equations, we investigated the assembly dynamics as a function of the ratio between the ...