Higher-dimensional rewriting systems are tools to analyse the structure of formally reducing terms to normal forms, as well as comparing the different reduction paths that lead to those normal forms. This higher structure can be captured by finding a homotopy basis for the rewriting system. We show that the basic notions of confluence and wellfoundedness are sufficient to recursively build such a homotopy basis, with a construction reminiscent of an argument by Craig C. Squier. We then go on to translate this construction to the setting of homotopy type theory, where managing equalities between paths is important in order to construct functions which are coherent with respect to higher dimensions. Eventually, we apply the result to approxim...