Mitochondrial dysfunction has a recognized role in the pathophysiology of neurodegeneration, including ischemic stroke and Alzheimer’s disease (AD). Compelling evidence shows that leptin prevents neuronal apoptosis and enhances cognition in AD models, and a bioactive fragment, leptin₁₁₆₋₁₃₀, mirrors the neuroprotective actions of leptin. However, their effects with relation to mitochondrial function in neurodegeneration and the receptor binding of leptin₁₁₆₋₁₃₀ remain largely unknown. Based on a combined glucose-serum deprivation (CGSD) model of ischaemic stroke in human SH-SY5Y cells and an Aβ₄₂-treatment model of AD in mouse hippocampal HT-22 cells, it is shown within the thesis that leptin alleviates excessive mitochond...