Estimates of the volume of the earliest crust based on zircon ages and radiogenic isotopes remain equivocal. Stable isotope systems, such as molybdenum, have the potential to provide further constraints but remain underused due to the lack of complementarity between mantle and crustal reservoirs. Here we present molybdenum isotope data for Archaean komatiites and Phanerozoic komatiites and picrites and demonstrate that their mantle sources all possess subchondritic signatures complementary to the superchondritic continental crust. These results confirm that the present-day degree of mantle depletion was achieved by 3.5 billion years ago and that Earth has been in a steady state with respect to molybdenum recycling. Mass balance modelling sh...