As data storage capacities continue to increase due to rapid advances in information technology, there is a growing need for devising scalable data mining algorithms able to sift through large volumes of data in a short amount of time. Moreover, real-world data is inherently imperfect due to the presence of noise as opposed to artificially prepared data. Consequently, there is also a need for designing robust algorithms capable of handling noise, so that the discovered patterns are reliable with good predictive performance on future data. This has led to ongoing research in the field of data mining, intended to develop algorithms that are scalable as well as robust. The most straightforward approach for handling the issue of scalability is ...