Cílem této bakalářské práce bylo navrhnout systém pro textově závislé rozpoznávání mluvčího. Bylo otestováno několik přístupů na databázi MIT, která obsahuje nahrávky průměrné délky 0,46s. Z otestovaných přístupů se jeví jako nejlepší kombinace systému DTW s využitím odhadu posteriorních pravděpodobností fonémů (posteriogramu) jako výstupu z Fonémového rozpoznávače, a akustického SID systému založeného na iVektorech a PLDA (Probabilistic Linear Component Analysis). Fúze těchto dvou systémů pomocí Neuronové sítě dosahuje nejlepších výsledků (EER) a to 17,84% pro ženy a 16,38% pro muže, což je relativní zlepšení 49,9% u žen a 54,2% u mužů oproti samostatnému akustickému rozpoznávání.The goal of this Bachelor's thesis was to design text depend...