Práca sa na úlohe rozpoznávania rukou písaných písmen zaoberá implementáciou viacvrstvovej perceptrónovej siete, učením metódou spätného šírenia chyby, hľadaním ich optimálnych parametrov, šírkou skrytej vrstvy, rýchlosťou a dĺžkou učenia, zvládaním poškodených dát. Výsledky vznikli opakovaným simulovaním a testovaním neurónovej siete použitím 52 152 malých písmen anglickej abecedy. Najlepšie výsledky pri čo najmenšej sieti a najkratšom čase tréningu dosiahla sieť so 60 neurónmi v skrytej vrstve a učenie rýchlosťou 0,01. Siete so širšou skrytou vrstvou dosiahli približne rovnakú úspešnosť pri testoch na neznámych písmenách, ale vyššiu úspešnosť na silne poškodených písmenách.This work uses handwritten character recognition as a model proble...