Práce se zabývá porovnáním knihoven pro práci umělými neuronovými sítěmi. Je vysvětlena základní teorie neuronu, neuronových sítí a jejich učení. Pro experimenty je vybrán vícevrstvý perceptron, Kohonenova síť a Hopfieldova síť. Následně jsou zvolena kritéria porovnávání jako je licence, komunita nebo poslední aktualizace, a pro experimenty jsou vybrány úlohy aproximace funkce pro vícevrstvý perceptron, asociace pro Hopfieldovu síť a shlukování pro Kohonenovu síť. Následně jsou implementovány programy s využitím daných knihoven. Závěrem je porovnání výsledků experimentů a kritérií.This thesis is about comparison of libraries of artificial neural networks. Basic theory of neuron, neural networks and their learning algorithms are explained he...