Redundant robots have received increased attention during the last decades, since they provide solutions to problems investigated for years in the robotic community, e.g. task-space tracking, obstacle avoidance etc. However, robot redundancy may arise problems of kinematic control, since robot joint motion is not uniquely determined. In this paper, a biomimetic approach is proposed for solving the problem of redundancy resolution. First, the kinematics of the human upper limb while performing random arm motion are investigated and modeled. The dependencies among the human joint angles are described using a Bayesian network. Then, an objective function, built using this model, is used in a closed-loop inverse kinematic algorithm for a redund...