La prise de décision dans un environnement partiellement observable est un sujet d'actualité en intelligence artificielle. Une façon d'aborder ce type de problème est d'utiliser un modèle mathématique. Notamment, les POMDPs (Partially Observable Markov Decision Process) ont fait l'objet de plusieurs recherches au cours des dernières années. Par contre, résoudre un POMDP est un problème très complexe et pour cette raison, le modèle n'a pas été utilisé abondamment. Notre objectif était de continuer les progrès ayant été réalisé lors des dernières années, avec l'espoir que nos travaux de recherches seront un pas de plus vers l'application des POMDPs dans des applications d'envergures. Dans un premier temps, nous avons développé un nouvel algor...
Partially Observable Markov Decision Processes (POMDPs) define a useful formalism to express probabi...
As agents are built for ever more complex environments, methods that consider the uncertainty in the...
We survey several computational procedures for the partially observed Markov decision process (POMDP...
La prise de décision dans un environnement partiellement observable est un sujet d'actualité en inte...
Planning under uncertainty is an increasingly important research field, and it is clear that the des...
We present two new algorithms for Partially Observable Markov Decision Processes (pomdps). The first...
Partially observable Markov decision process (POMDP) is a formal model for planning in stochastic do...
Article dans revue scientifique avec comité de lecture. nationale.National audienceNous présentons u...
Partially Observable Markov Decision Processes (POMDPs) provide a rich representation for agents act...
The problem of making optimal decisions in uncertain conditions is central to Artificial Intelligenc...
Partially observable Markov decision processes (POMDPs) are a natural model for planning problems wh...
Markov decision process is usually used as an underlying model for decision-theoretic ...
This paper is about planning in stochastic domains by means of partially observable Markov decision...
Partially observable Markov decision processes (POMDPs) are an appealing tool for modeling planning ...
Colloque avec actes et comité de lecture. internationale.International audienceA new algorithm for s...
Partially Observable Markov Decision Processes (POMDPs) define a useful formalism to express probabi...
As agents are built for ever more complex environments, methods that consider the uncertainty in the...
We survey several computational procedures for the partially observed Markov decision process (POMDP...
La prise de décision dans un environnement partiellement observable est un sujet d'actualité en inte...
Planning under uncertainty is an increasingly important research field, and it is clear that the des...
We present two new algorithms for Partially Observable Markov Decision Processes (pomdps). The first...
Partially observable Markov decision process (POMDP) is a formal model for planning in stochastic do...
Article dans revue scientifique avec comité de lecture. nationale.National audienceNous présentons u...
Partially Observable Markov Decision Processes (POMDPs) provide a rich representation for agents act...
The problem of making optimal decisions in uncertain conditions is central to Artificial Intelligenc...
Partially observable Markov decision processes (POMDPs) are a natural model for planning problems wh...
Markov decision process is usually used as an underlying model for decision-theoretic ...
This paper is about planning in stochastic domains by means of partially observable Markov decision...
Partially observable Markov decision processes (POMDPs) are an appealing tool for modeling planning ...
Colloque avec actes et comité de lecture. internationale.International audienceA new algorithm for s...
Partially Observable Markov Decision Processes (POMDPs) define a useful formalism to express probabi...
As agents are built for ever more complex environments, methods that consider the uncertainty in the...
We survey several computational procedures for the partially observed Markov decision process (POMDP...