Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 219-227).One of the foremost challenges in robotics is the development of muscle-like actuators that have the capability to reproduce the smooth motions observed in animals. Biological muscles have a unique cellular structure that departs from traditional electromechanical actuators in several ways. A muscle consists of a vast number of muscle fibers and, more fundamentally, sarcomeres that act as cellular units or building blocks. A muscle's output force and displacement are the aggregate effect of the individual building blocks. Thus, without using gearing or transmissio...