The Turán number of a graph H, denoted by ex(n, H), is the maximum number of edges in any graph on n vertices which does not contain H as a subgraph. Let Pk denote the path on k vertices and let mPk denote m disjoint copies of Pk. Bushaw and Kettle [Turán numbers of multiple paths and equibipartite forests, Combin. Probab. Comput. 20 (2011) 837–853] determined the exact value of ex(n, kPℓ) for large values of n. Yuan and Zhang [The Turán number of disjoint copies of paths, Discrete Math. 340 (2017) 132–139] completely determined the value of ex(n, kP3) for all n, and also determined ex(n, Fm), where Fm is the disjoint union of m paths containing at most one odd path. They also determined the exact value of ex(n, P3 ∪ P2ℓ+1) for n ≥ 2ℓ + 4. ...