The classical perceptron algorithm is an elementary row-action/relaxation algorithm for solving a homogeneous linear inequality system Ax > 0. A natural condition measure associated with this algorithm is the Euclidean width {tau} of the cone of feasible solutions, and the iteration complexity of the perceptron algorithm is bounded by 1/{tau}2 [see Rosenblatt, F. 1962. Principles of Neurodynamics. Spartan Books, Washington, DC]. Dunagan and Vempala [Dunagan, J., S. Vempala. 2007. A simple polynomial-time rescaling algorithm for solving linear programs. Math. Programming 114(1) 101–114] have developed a rescaled version of the perceptron algorithm with an improved complexity of O(n ln (1/{tau})) iterations (with high probability), which is t...