Classical mechanics in a computational framework. Lagrangian formulation. Action, variational principles. Hamilton's principle. Conserved quantities. Hamiltonian formulation. Surfaces of section. Chaos. Liouville's theorem and Poincar, integral invariants. Poincar,-Birkhoff and KAM theorems. Invariant curves. Cantori. Nonlinear resonances. Resonance overlap and transition to chaos. Properties of chaotic motion. Transport, diffusion, mixing. Symplectic integration. Adiabatic invariants. Many-dimensional systems, Arnold diffusion. Extensive use of computation to capture methods, for simulation, and for symbolic analysis. From the course home page: Course Description 12.620J covers the fundamental principles of classical mechanics, with a mode...