We discuss the impact of a 2D-charged carrier reservoir for high-speed optical amplification and modulated lasing in quantum dot (QD)-based devices by testing the amplification of short trains of high power, femtosecond optical pulses in an InGaAs QD-in-a-well-based semiconductor optical amplifier (SOA). We adapt a laser-like rate equation model to describe heterodyne pump-and-probe experiments. After an optically induced perturbation, we identify the gain recovery process as a forced steady-state situation which can be consistently described within rate-equation based laser theory. The model is systematically applied to analyze the experimental amplification and the overall SOA dynamics as a function of injected current. We conclude that, ...