We present a method for computing the non-perturbative mass-gap in the theory of Bosonic membranes in flat background spacetimes with or without background fluxes. The computation of mass-gaps is carried out using a matrix regularization of the membrane Hamiltonians. The mass gap is shown to be naturally organized as an expansion in a 'hidden' parameter, which turns out to be $\frac{1}{d}$: d being the related to the dimensionality of the background space. We then proceed to develop a large $N$ perturbation theory for the membrane/matrix-model Hamiltonians around the quantum/mass corrected effective potential. The same parameter that controls the perturbation theory for the mass gap is also shown to control the Hamiltonian perturbation theo...