Lossy compression can produce false information, such as blockiness, noise, ringing, ghosting, aliasing, and blurring. This paper provides a comprehensive model for optical remote sensing image characteristics based on the block standard deviation’s retention rate (BSV). We first propose a compression evaluation method, CR_CI, that combines neural network prediction and remote sensing image quality fidelity. Through the compression evaluation and improved experimental verification of multiple satellites (CBERS-02B satellite, ZY-1-02C satellite, CBERS-04 satellite, GF-1, GF-2, etc.), CR_CI can be stable, cleverly test changes in the information extraction performance of optical remote sensing images, and provide strong support for optimizing...