Network traffic monitoring uses empirical entropy to detect anomalous events such as various types of attacks. However, the exact computation of the entropy in high-speed networks is a difficult process due to the limited memory resources available in the data plane hardware. In this paper, we present a method and hardware accelerator to approximate the empirical entropy of a large data set with high throughput and sublinear memory requirements. Our method uses streaming algorithms that exploit the fine-grained parallelism of existing hardware platforms for data plane processing, such as field-programmable gate arrays (FPGAs). The method uses sketches to compute the cardinality of the stream and the frequencies of the top-K elements on line...