Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Nuclear Engineering, 2002.Includes bibliographical references (p. 93-101).Theoretical discoveries in the nascent field of quantum information processing hold great promise, suggesting the means for increased computational power and unconditionally secure communications. To achieve these advances in practice, however, quantum information must be stored and manipulated with high fidelity. Here, we describe how quantum information stored in a nuclear spin system can be controlled accurately. We describe a method creating strongly-modulating single-spin gates that faithfully produce the desired unitary transformations. The simulated fidelity of the best gate (under ideal condition...